From Kobe to the rest of the world

Heralding a new era in healthcare through trans-sector alliances

On April 1, 2018, the Foundation for Biomedical Research and Innovation (FBRI) changed its name, adding “at Kobe” at the end of its official English name and, in Japanese, harmonizing it with the name of “Kobe Biomedical Innovation Cluster (KBIC).” As the pivotal organization that supports the KBIC, the FBRI serves as a center of intelligence that builds bridges between industrial, governmental, academic and medical sectors, to propose, from Kobe to the rest of the world, innovative solutions to issues of health and longevity.
At the heart of the Kobe Biomedical Innovation Cluster leading Japan’s future

In April 2018, our Foundation changed its official name, notably in Japanese, including in it the mention of "Kobe Biomedical Innovation Cluster."

The Kobe Biomedical Innovation Cluster (KBIC) started out as a project to reconstruct Kobe’s economy, which had been devastated by the Great Hanshin-Awaji Earthquake, as well as to protect and nurture local residents’ lives and contribute to the international community. Since the Kobe Medical Industry Development Project Discussion Group was set up in 1998 to elaborate the project and take concrete steps, by October 2018, twenty years will have passed. During this period, the FBRI, established in March 2000 as the main organization supporting the KBIC, has vigorously pursued biomedical cluster formation in Kobe through advanced clinical research and other efforts toward the construction of next-generation healthcare systems.

The KBIC has indeed developed into a remarkable healthcare cluster representative of Japan, concentrating over 340 companies, organizations, and research institutions, as well as a number of highly specialized hospitals. As for the FBRI, now reorganized under its new name, we are expected to continue making equally significant progress, promoting joint projects and other forms of collaboration among corporate, scientific, academic, and medical institutions located at the KBIC, leading to the development of innovative medical technologies and the creation of innovations beneficial to Kobe’s economy.

We are also required to offer solutions to the great question as to how to build a bright future in the face of the unprecedented challenge that Japan is undergoing ahead of the rest of humanity: rapid population aging and birth rate decline.

At the FBRI, we hope to continue to effectively fulfill our role of proposing, from Kobe to the rest of the world, solutions to problems along the way to realizing a society in which all members can enjoy good health and longevity, growing as a center of intelligence where human resources, information, knowledge and wisdom meet, and building bridges for trans-sector collaboration.

Your continued warm support and cooperation will be greatly appreciated.

Tasuku Honjo, M.D., Ph. D.
President
Foundation for Biomedical Research and Innovation at Kobe
Foundation for Biomedical Research and Innovation at Kobe

The Foundation for Biomedical Research and Innovation at Kobe (FBRI), established in March 2000 through funding by Kobe City and Hyogo Prefecture, is the pivotal organization that supports the development of a center of biomedical industry and research in Kobe ("Kobe Biomedical Innovation Cluster" or "KBIC").

The FBRI is charged with general coordinating functions to promote and facilitate collaboration and integration among industrial, governmental, academic, and medical sectors; to support R&D leading to advances in healthcare and their clinical application; and to work toward the construction of next-generation healthcare systems. Through these activities, the FBRI expects to contribute to the creation of innovative healthcare technologies and the formation and accumulation of healthcare-related industries in Kobe. The FBRI’s ultimate goals are to revitalize Kobe's economy, enhance local residents' wellbeing, and contribute to the international community.

President: Tasuku Honjo, M.D., Ph.D.
Established: March 17, 2000
Basic assets: 1,232.37 million yen (as of March 31, 2017)

Organizational chart

FBRI Foundation for Biomedical Research and Innovation at Kobe
- President/ Senior Executive Director/ Executive Director and Secretary General

IBRI Institute of Biomedical Research and Innovation

TRI Translational Research Center for Medical Innovation
- Division for Regenerative Medical Product Development

RDC Research & Development Center for Cell Therapy

CCD Center for Cluster Development and Coordination
From a devastating earthquake to a brighter future
Kobe Biomedical Innovation Cluster

On January 17, 1995, the Great Hanshin-Awaji Earthquake struck Kobe. Severely damaged and realizing anew the preciousness of life, Kobe pledged to not simply reconstruct itself in economic terms but to do so by becoming a place where life is cherished above all. The city thus launched the project to develop a prime hub of healthcare research and related services.

The Kobe Biomedical Innovation Cluster (KBIC) has since been developing on Port Island, gathering together R&D centers focusing on state-of-the-art medical technologies and businesses in healthcare-related fields, which are considered 21st-century growth sectors. Here, vigorous efforts continue to construct new healthcare systems that integrate basic research, clinical applications, and industrialization.

Objectives

- Creation of employment and revitalization of Kobe’s economy
- Promotion of citizens’ health and welfare
- Contribute to the improvement of medical standards in Asian countries
Aiming to create new “seeds” of healthcare for a healthier and longer-lived society

Today, Japan is at a crossroads, confronted with a rapidly aging population, diminishing birth rates, a shrinking labor force, and increasing medical and nursing expenses for the elderly. Many Japanese are affected by cancer, senile dementia, diabetes, heart disease, cerebrovascular disease, and age-related functional disorders.

At the Institute of Biomedical Research and Innovation (IBRI), we consider that the way to overcome these challenges and open up a bright future for Japan is through realization of a society where people live longer while remaining healthy. Toward this goal, the IBRI carries out fundamental research mainly in three domains, clinical immunology, aging, and regenerative medicine; with research oriented toward the development of diagnostic and therapeutic methods.
Immunology, Laboratory of Immunology

Professor: Akio Ohta

Rebalancing the immune system, reviving the healthy life

Dysregulation of the immune system triggers a wide variety of diseases. On one hand, the immunocompromised state allows the outgrowth of pathogens, such as bacteria and viruses, and even cancer cells. On the other hand, overwhelming immune response led by uncontrolled immune cells can cause proinflammatory disorders, including allergic and autoimmune diseases. The objective of our research is to develop a novel therapeutic approach to these inflammation-related diseases by controlling the intensity of immune activities to appropriate levels. The human body has physiological feedback mechanisms that downregulate proinflammatory activities. These immunoregulatory mechanisms, known as immune checkpoints, are promising targets of therapeutic intervention. Blockade of immune checkpoints promotes immune activities; therefore, it has been used in the working treatment of cancer patients. Conversely, pharmacological stimulation of immune checkpoints will be able to attenuate immune activities, thereby alleviating various proinflammatory disorders.

Gerontology, Laboratory of Molecular Life Science

Professor: Yo-ichi Nabeshima

Elucidating the mechanism of aging for healthier and longer life expectancy

Aging, the common and greatest risk factor of all age-related diseases, is closely related to cancer, heart disease, senile dementia, cerebrovascular disease, and other life-threatening diseases. This means that elucidating the mechanism of aging and developing a method to control aging are crucial to overcoming age-related diseases. We developed mouse models of aging, which are widely used around the world, to elucidate the mechanism for the onset of age-related diseases. We also identified sirtuins, known as anti-aging genes, to examine how they delay aging and prolong life. Interestingly, our recent research findings indicate that delaying human aging and extending life expectancy is not quite a pipe dream. Focusing on the analysis of sirtuins and the klotho gene, named after the Greek goddess Klotho who spun the thread of life, we are working on methodologies to clarify the mechanism for the onset of age-related diseases and thus suppress aging, with the goal of overcoming aging and age-related diseases.

Brain and Neurodegenerative Disease Research

Professor: Minako Hoshi

Towards a precise understanding of human brains; research that can help you maintain your physical and emotional health and live life to the fullest, whatever your age

Your brain determines the essence of “who you are,” that is, how you would like to live your life right now and in future, based on memory and learning up to now. In Alzheimer’s disease, the patients are gradually losing their memory and learning ability as neurons are degenerated in their brains. We are clarifying at the molecular level precisely why and how neurons die. Based on this understanding, we sincerely hope to apply our research findings to prevent death of neurons so that you can fully live your life in good health, maintaining the ability to self-recognize and make decisions on your own throughout your life.

Regenerative Medicine Research

Professor: Akihiko Taguchi

R&D of novel therapy for regeneration of brain function

It had been believed that neuronal regeneration cannot occur after injury. The major causes of bed-ridden are stroke and dementia, and there is no effective therapy for regeneration of brain function at present. We have demonstrated that the neuronal regeneration can be achieved by therapeutic angiogenesis using hematopoietic stem cell. Our clinical trial of autologous hematopoietic stem cell transplantation for stroke patients showed favorable trends in acceleration of functional recovery. Furthermore, we have recently figured out the mechanism of how hematopoietic stem cell activates angiogenesis at ischemic tissue. Based on these findings, R&D projects of novel therapy for stroke and dementia are ongoing.
Striving to control diseases

TRI’s ultimate goal is to control all diseases. To this goal, we offer powerful support to the development of new medical technologies to realize their practical application in Japan and spread them all around the world. A number of technologies whose development we have supported since TRI’s foundation, such as those in regenerative medicine and tissue engineering, and new medical equipment and devices have been granted pharmaceutical approvals one after another, gradually reaching patients. These innovations have considerably improved the prospect of overcoming diseases for which no treatment existed before. We are determined to continue and reinforce our efforts to realize a lively society where people live to be 100 years old and beyond in happiness.
Development of clinical and scientific infrastructure

TRI was established jointly by the City of Kobe and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in 2003 as the first academic data center and statistical analysis center for clinical studies in Japan. We have provided consultation services to all researchers and medical doctors who lead clinical studies and have given them comprehensive support ranging from research planning to data analysis and the preparation of scientific papers. Changed its organization name to “Translational Research Center for Medical Innovation” in April 2018, TRI pursues its activities to bring new healthcare solutions to patients and ultimately control all diseases. We have thus been reinforcing its cycle of realizing medical innovation from a global perspective with two pillars: the Institute of Medical Research and Development in charge of promoting, managing, and conducting original research projects; and the Institute of Health Data Science in charge of supporting clinical studies in response to the requests from researchers and medical doctors.

Promoting medical innovation

To effectively promote medical innovation, TRI has assisted leading universities and hospitals across Japan in their infrastructure development through the governmental projects such as Coordination, Support and Training Program for Translational Research which was launched in 2007 as the first MEXT-initiated medical innovation project in Japan and the Project of Translational and Clinical Research Core Centers commissioned by the Japan Agency for Medical Research and Development (AMED) which was established in 2013. Consequently, during the first and second quarters of 2017, in total of twenty-six marketing approvals were acquired for the research outcomes of the Core Centers across Japan, bringing new medical technologies to patients. Within the next few years, this number is expected to get multiplied.

Establishing “Learning Health System”

In this new era of utilizing enormous amount of data (Real World Data) collected via electronic health records (EHR) and digital health devices, TRI is working to establish a new Learning Health System mechanism that combines research and clinical practice. To this end, TRI has already developed its original electronic data capture (EDC) system “eClinical Base.” With the view of new drug development and medical technology innovation, TRI will address to create the new mechanism on its accumulated experience by actively utilizing artificial intelligence (AI) that enables medical innovation on a global scale.
For safe, ensured, and accessible cell therapy

In cell therapy, which involves collecting cells that are then differentiated as desired and transplanted to patients, safety is of utmost importance. The Research and Development Center for Cell Therapy (RDC) carries out research and development concerning cell culture methodology, the formulation of testing methods to ensure safety, and the standardization of quality inspection methods. The RDC also manufactures cell-based products in facilities in which cells are cultured in a germfree state from the time of collection, while operating and managing manufacturing and product quality inspection facilities. To reduce the cell manufacturing cost, the RDC is developing automated cell manufacturing system that can also increase output while assuring the quality of the product.
1 Ensuring cell safety
Among all the safety tests for cells differentiated from pluripotent stem cells such as IPS and ES cells, the most important one is the tumorigenicity testing. At the RDC, we carefully determine what should be done in safety tests, design test contents and conduct tests accordingly in projects commissioned by the national government and other parties. These test results are used as important data in the implementation of clinical products. We are working on the formulation of guidelines that ensure safety based on test results. We are also carrying out joint R&D projects with other research institutions and companies toward the goal of standardizing quality inspection methods and new cell culture methods needed to reduce the manufacturing cost of cell therapeutic products while maintaining their safety. We draw on the techniques and knowhow acquired through such projects in carrying out cell inspection and assessment commissioned by research institutions, universities, and companies. It is hoped that these research activities will lead to the establishment of safe and standardized cell therapy methodology.

2 Manufacturing cell products, managing and operating cell product-manufacturing facilities
The RDC accepts commissioned projects from pharmaceutical companies to culture cells and manufacture cell products in conformity with the medical/pharmaceutical Good Manufacturing Practice (GMP; manufacturing and quality control standards for drugs and medical devices and equipment) and the Pharmaceutical Inspection Convention and Pharmaceutical Inspection Co-operation Scheme (PIC/S; international frameworks for the development, implementation, and maintenance of medical/pharmaceutical GMP and quality control systems adopted by regulatory authorities). The RDC also manages and operates a cell processing center (CPC), which is indispensable for cell culture and cell product manufacturing, creating an environment for practical application of cell therapy. Utilizing the knowledge and experience acquired through CPC management and operation, the RDC provides consulting services to companies with similar CPC facilities.

3 Developing cell product manufacturing systems
To make cell therapy generally accessible, it will be necessary to industrialize cell product manufacturing. At present, cell products have been produced in large-scale specialized facilities requiring highly trained human staff. As a result, the manufacturing cost is high, and safety issues remain since the quality of final products can only be verified by destructive testing. These factors have obstructed the industrialization of cell therapy. To break through this situation, we have designed a new manufacturing process. The RDC has been instrumental in the establishment of a consortium, Smart Cell Processing (SCP) Partners, with companies in various segments, including IT, inspection and analysis, and manufacturing control software development, to perfect a cell product manufacturing system in which products are made as designed, with a new quality control format that allows quality inspection during manufacturing. We are continuing R&D toward practical application of this next-generation cell product manufacturing technology that will reduce manufacturing costs while securing safety.
KBIC’s “concierge”
Advising and nurturing for future healthcare

The Center for Cluster Development and Coordination (CCD) was established in 2005 to accelerate KBIC’s development by providing assistance to KBIC-based companies and small and medium-sized local companies in their business projects, promoting collaboration between the KBIC and overseas clusters, and facilitating trans-sector partnership.

The CCD coordinates collaboration and integration among various companies, universities, research centers, and medical institutions that constitute the KBIC for synergetic effects from their concentration. Under its seamless support system, the CCD also promotes the KBIC’s international activities.
Promoting open innovation through trans-sector interaction and collaboration

The CCD explores and searches for seeds for R&D at universities, research centers, and companies, and needs in the field of healthcare, for eventual practical application or commercialization of promising seeds. The CCD also promotes the creation of new innovations through collaboration between industrial and academic sectors.

The CCD operates an open innovation program in which joint research projects making use of the KBIC’s R&D infrastructure comprising research centers and facilities are proposed to domestic and international pharmaceutical companies and other potential partners. The CCD also organizes various networking events, including "Kobe Regenerative Medicine Study Meetings" for the industrialization of regenerative medical technologies through collaboration between related companies and researchers, thereby promoting interactions among KBIC-based companies and researchers in the hope that they will lead to new innovations.

Promoting the KBIC’s international activities

The CCD supports the KBIC’s international activities, such as interaction with major bio-clusters outside Japan, attendance at or participation in international exhibitions and symposiums, to publicize the KBIC and build networks on a global basis. The CCD also engages in global information exchange concerning research seeds and needs and industrial trends in medical device, drug discovery, and biotechnology, promoting match-making among KBIC-based companies and researchers and proposing international joint research/development projects.

To make the KBIC known globally, the CCD is engaging in vigorous promotional activities, co-hosting events with overseas clusters and running advertisements in international medical/scientific journals and other media.

Assisting small and medium-sized local businesses and KBIC-based companies in their projects

In April 2018, the CCD opened the KBIC Business Incubation and Collaboration Liaison Office (KBIC Liaison Office) as a new business support center to better respond to KBIC-based companies and researchers’ diverse needs for support.

CCD is staffed with dedicated coordinators, each specializing in a specific field, such as medical device and drug discovery. They assist companies and researchers in practical application and business projects involving R&D seeds. The CCD offers integrated support for medical device development in the form of "Support Platform for Medical Device Commercialization" covering seed exploration, matching, regulatory consultation by PMDA Cooperation Center for Regulatory Science Strategy Consultation, and so on. To support in silico drug discovery using the supercomputer K, the center is developing the drug discovery application "K" which is easily operable and capable of high-precision simulation.

The CCD also supports business projects with the help of Healthcare Development Supporters, members of the general public who cooperate toward the development of healthcare-related products and services.

Environmental improvement and strategic information dissemination

The CCD pursues continued environmental improvement at the KBIC in consideration of needs and wishes of its constituent research centers, universities, and businesses so that they can engage in their activities in an environment worthy of a research cluster of international standard. The CCD also supports the stakeholders' initiatives within the KBIC that improve their R&D activities or operational environment.

On the occasion of the 20th anniversary of KBIC Development Project, the CCD is pursuing information dissemination activities vigorously, including the management of the KBIC website, the use of social networks, the distribution of email newsletters, and the organization of events. These activities are expected to effectively disseminate information on the KBIC and its past activities and achievements, making them widely known within and outside Japan.
Manufacturing cell-based therapeutic products for regenerative medicine

Implementing and supporting regenerative medical product manufacturing and quality control

The Division for Regenerative Medical Product Development manufactures regenerative medical products and carries out related quality control for clinical studies. The Division also provides support for associated manufacturing and quality control and carries out R&D for practical application of new regenerative medical products.

Activity

1. Manufacturing a cell-based therapeutic product for corneal regeneration

The cornea on the surface of the eye is covered by the corneal epithelium. When the cornea is degenerated or damaged, the eye surface can become opaque or overlaid, seriously compromising vision. This condition is extremely difficult to treat. Prof. Shigeru Kinoshita, Prof. Chie Satozono, and their colleagues at the Kyoto Prefectural University of Medicine have developed a cell-based therapeutic product, an epithelial sheet (epithelial sheet developed from oral mucosa) for clinical application. This product is highly effective in repairing the damaged eye surface that is otherwise difficult to treat.

The epithelial sheet is manufactured from cells collected from the patient’s oral tissues, which are then cultured on an amniotic membrane as a matrix. Already, epithelial sheets have been transplanted to many patients as part of clinical studies or in advanced medical treatment, demonstrating the safety and efficacy of this technology. To make this treatment accessible in many hospitals, clinical studies are required to enable its commercialization.

The Division has already conducted manufacturing and quality control (inspection) of this product as part of advanced clinical treatment, and plans to continue the same activities for future clinical studies.

Activity

2. Manufacturing a cell-based therapeutic product for cartilage regeneration

Knee joint cartilage has a very limited capacity for self-repair. Once injured, it cannot be repaired or regenerated in most cases. A cell-based therapeutic product for cartilage regeneration has been developed in Germany. Its manufacturing process involves culturing the patient’s cartilage cells in collagen gel serving as a scaffold for cell culture. Transplanted, the product is expected to repair damaged cartilage, thus removing the accompanying pain and restoring the functionality of the knee.

In Europe, this product has already been transplanted in many patients for cartilage regeneration. Its safety and efficacy have already been confirmed. Initial clinical study (an investigator-initiated trial) is already done in Japan. To make this treatment technology available in hospitals in Japan, it is imperative that a sponsor-led clinical trial be conducted so that the product can be commercialized within Japan.

The Division has already manufactured this product and conducted its quality control (inspection) within the framework of the investigator-initiated clinical trial. The Division intends to continue the production for the future sponsor-led clinical trial.
KBIC
Kobe Biomedical Innovation Cluster

Kobe, a beautiful port city between sea and mountains, is located in the southern part of Hyogo Prefecture. The Kobe Biomedical Innovation Cluster (KBIC) on Port Island is conveniently situated, accessible by Port Liner in only six minutes from Kobe Airport and 12 minutes from Sannomiya in central Kobe. Sannomiya is served by several railway networks, and the municipal subway system. KBIC has easy connections to major cities across Japan via Kobe Airport, and in the rest of the world via nearby Osaka Airport and Kansai International Airport.

FBRI’s principal activity centers
Institute of Biomedical Research and Innovation (IBRI)
KIMEC Building (KIMEC)
Translational Research Informatics Center (TRI)
Kobe Hybrid Business Center (KHBC)
International Medical Device Alliance (IMDA)

- FBRI manages and operates rental laboratories, offices, and seminar/conference rooms that meet diverse needs.
Twenty years of working for the future of healthcare

In October 2018, the KBIC will celebrate the 20th anniversary of the beginning of the discussion on the Kobe Medical Industry Development Project. Up to the present, over 340 healthcare-related organizations and businesses have been established on Port Island. Drawing on this concentration, which facilitates translational collaboration and integration, the KBIC aims at creating totally innovative medical technologies, equipment and pharmaceutical drugs.

1998
Kobe Medical Industry Development Project Discussion Group was established (chaired by Dr. Hideo Imura, then Director of Kobe City Medical Center General Hospital).

1999
Kobe Medical Industry Development Project Study Group was established.

2000
Foundation for Biomedical Research and Innovation was established.
Riken Center for Developmental Biology (CDIB) opened.

2003
Institute of Biomedical Research and Innovation (IBRI) Laboratory commenced full-scale operation.
IBRI Hospital opened.
Translational Research Informatics Center (TRI) opened.

2004
Kobe Biotechnology Research and Human Resource Development Center (BTRC)/Kobe University Business Incubation Center opened.
Business Support Center for Biomedical Research Activities (BMA) opened.

2005
Kobe Life Science Promotion Council was established.

2006
The number of healthcare-related businesses and organizations located on Port Island reached 100.
Kobe Medical Device Development Center (MEDOEC) opened.
Kobe Healthcare Industry Development Center (HI-DEC) opened.

2007
Riken Molecular Imaging Research Program opened.
“Kobe Life Science Promotion Vision” was presented.

2008
Foundation for Computational Science (FOCUS) was established.
The 10th anniversary of the Kobe Medical Industry Development Project.
Commemorative ceremony and symposium.
2014
- The world’s first transplant using the patient’s own iPSC cells (target disease: Age-Related Macular Degeneration) was conducted.
- Kobe was selected as the site of the first K computer.
- Kobe Biomedical Innovation Cluster was designated as Kansai National Strategic Special Zone.
- TOCHU Medical Plaza opened.

2010
- RIKEN Advanced Institute for Computational Science (present RIKEN Center for Computational Science, K Computer) opened.

2012
- Joint use of the K Computer commenced.
- Foundation for Biomedical Research and Innovation was reorganized as a public-interest corporation.

2013
- Kobe Minimally Invasive Cancer Center opened.
- Nishi Memorial Port Island Rehabilitation Hospital opened.
- Child Chemotherapy House opened.

2015
- The number of healthcare-related businesses and organizations located on Port Island reached 300.
- “Compass to Healthy Life” Research Complex program, managed by the Ministry of Education, Culture, Sports, Science, and Technology, commenced.
- RIKEN Integrated Innovation Building (IBB) opened.
- Integrated Research Center of Kobe University, Annex Building, opened.

2016
- Hyogo Prefectural Kobe Children’s Hospital was relocated and opened.
- “Kobe Life Science Promotion Vision” was revised (revised and enlarged).

2017
- The world’s first transplant using donor iPSC cells (target disease: Age-Related Macular Degeneration) was conducted.
- IBRI Hospital was merged into Kobe City Medical Center General Hospital.
- Kobe Center for Medical Innovation (KCM) opened.
- International Clinical Cancer Research Center of Kobe University opened.
- Kobe Eye Center opened.
- Hyogo Ion Beam Medical Center Kobe Proton Center opened.

2018
- The Foundation’s official name was changed.

2009
- Port Island Campus, Konan University (Faculty of Frontier of Innovative Research in Science and Technology) opened.

Kobe City Medical Center General Hospital

Press conference following the world’s first transplant using donor iPSC cells.

Kobe Eye Center

300 healthcare-related businesses and organizations
FBRI’s Fourth Management Plan

In April 2018, the FBRI launched its Fourth Management Plan for the period from April 2018 to March 2023. This Plan was considered based on a report entitled “New R&D strategy”, penned mainly by FBRI President Dr. Tasuku Honjo. This report itself was formulated in response to some important recent changes, such as the integration of the Institute of Biomedical Research and Innovation (IBRI) Hospital into Kobe City Medical Center General Hospital and the development of the Kobe Biomedical Innovation Cluster into a full-fledged town housing over 340 healthcare-related businesses and organizations.

The new Management Plan, under which the FBRI’s official name has been changed, cites as the FBRI’s objectives the promotion of social implementation of innovative medical technologies and the establishment of comprehensive coordinating capabilities to realize collaboration and integration among industrial, governmental, academic and medical sectors. In working toward these objectives, the FBRI will be mainly led by four centers working closely with one another: the Institute of Biomedical Research and Innovation (IBRI) in charge of research, the Translational Research Center for Medical Innovation (TRI) and the Research and Development Center for Cell Therapy (RDC) in charge of promoting practical application, and the Center for Cluster Development and Coordination (CCD) for coordination and business development.

We are convinced that our endeavors thus organized will allow us to propose novel Kobe-originating medical technologies that can meet hitherto unmet needs at the earliest possible time, while attracting more businesses and research organizations to Port Island, thereby further invigorating the Kobe Biomedical Innovation Cluster.

The Fourth Management Plan is viewable at https://www.fbri-kobe.org/about/report (Japanese only)

Inquiries

For general inquiries regarding the Foundation for Biomedical Research and Innovation at Kobe:

TEL: +81-(0)78-306-1700 (central) FAX: 078-306-1708
URL: https://www.fbri-kobe.org
E-MAIL: kbic-info@fbri-kobe.org